3-2 Videos Guide

3-2a

Theorem (statement):

- Rolle's Theorem: Let f be a function such that:

1. f is continuous on $[a, b]$.
2. f is differentiable on (a, b).
3. $f(a)=f(b)$.

Then there is a number $c \in(a, b)$ such that $f^{\prime}(c)=0$.

Exercises:

- Verify that the function satisfies the three hypotheses of Rolle's Theorem on the given interval. Then find all numbers c that satisfy the conclusion of Rolle's Theorem. $f(x)=x^{3}-2 x^{2}-4 x+2, \quad[-2,2]$
- Let $f(x)=\tan x$. Show that $f(0)=f(\pi)$ but there is no number c in $(0, \pi)$ such that $f^{\prime}(c)=0$. Why does this not contradict Rolle's Theorem?

3-2b

Proof:

- Rolle's Theorem

Theorem (statement and proof):

- Mean Value Theorem: Let f be a function such that:

1. f is continuous on $[a, b]$.
2. f is differentiable on (a, b).

Then there is a number $c \in(a, b)$ such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.

- Mathematical theory (how math works)

3-2c

Exercises:

- Verify that the function satisfies the hypotheses of the Mean Value Theorem on the given interval. Then find all numbers c that satisfy the conclusion of the Mean Value Theorem.

$$
f(x)=\frac{1}{x^{\prime}} \quad[1,3]
$$

- Show that the equation has exactly one real root.

$$
2 x-1-\sin x=0
$$

